武大资讯

首页 >> 武大资讯 >> 武大要闻 >> 正文

【学术前沿动态】诺贝尔物理学奖相关论文分析

发布时间:2020-10-19 10:31 来源:图书馆 阅读:
A A A

信息整理:图书馆

2020年诺贝尔物理学奖被分成两半,其中一半授予英国科学家罗杰·彭罗斯Roger·Penrose,以奖励他在黑洞形成以及相对论的相关理论的有力预测;另一半授予德国科学家赖因哈德·根泽尔(Reinhard·Genzel)和美国科学家安德里亚·盖兹(Andrea·Ghez),以奖励他们对我们银河系中心超大质量天体的发现。下面从获奖人的学术论文及其施引文献角度对相关主题展开分析。

1.获奖人发文文献分析

三位获奖人相关主题的SCIE论文642篇。最早发文年份是1979年,从1996年起,每年发文数量保持在12-44篇之间,如图1所示。其中,近10年有25ESI高被引论文,论文清单详见:

https://libguides.lib.whu.edu.cn/c.php?g=665844&p=4682270&preview=7c59c2645fb5fb2b0997d6830585dfa5

获奖者相关论文发文期刊涉及地学天文、物理和综合性期刊三种类型,其中接近50%的论文发表在ASTROPHYSICAL JOURNAL,另有18篇论文发表在NATURESCIENCE期刊上。

表1:诺贝尔物理学奖获得者论文主要来源期刊

期刊名

发文量

占比%



ASTROPHYSICAL JOURNAL

310

48.287


ASTRONOMY ASTROPHYSICS

113

17.601


MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

58

9.034


IAU SYMPOSIA

25

3.894


ASTROPHYSICAL JOURNAL LETTERS

23

3.583


NATURE

14

2.181


ASTRONOMICAL JOURNAL

11

1.713


ASTROPHYSICS AND SPACE SCIENCE

11

1.713


ASTRONOMISCHE NACHRICHTEN

10

1.558



中国与诺贝尔物理学奖获得者共有14篇相关主题的合作论文,合作机构涉及:中国科学院(8篇)、北京大学(5篇)、中国科技大学(5篇),以及北京师范大学、南京大学和清华大学(各1篇)。相关论文信息详见:

https://libguides.lib.whu.edu.cn/c.php?g=665844&p=4682270&preview=7c59c2645fb5fb2b0997d6830585dfa5

2.获奖人施引文献分析

据检索,截至1012日,三位诺贝尔物理学奖得主的642篇相关文献被全球21677篇论文引用,这些施引论文的年代分布如图2所示。从全球来看,施引文献持续增长,1979年仅有2篇,1999年达到539篇,到2019年则高达1396篇。全部施引文献中,中国有1682篇,最早发文为1996年,其增长趋势也缓于全球。

图2:诺贝尔物理学奖施引文献年代分布

3为施引文献的国家分布。排名第一的是美国,发文量达12135篇,遥遥领先其他国家,排在第二和第三位的是德国和英国。三位获奖人分别属于这三个国家。中国发文排名第12位。

   图4展示了中国施引文献排名前十的机构,中国科学院、北京大学、南京大学和中国科技大学表现突出。

中国参与的1682篇施引文献中,有1174篇为国际合作论文,占比高达70%。主要的国际合作机构有:马克斯·普朗克协会(324篇,诺贝尔奖得主隶属机构)、法国国家科学研究中心(229篇)、意大利国家天体物理学研究所(193篇)、加州理工学院(179篇,诺贝尔奖得主隶属机构)和加州大学系统(177篇)。可见,中国大陆与国际相关领域有较强的合作关系,与2020年诺贝尔物理学奖得主隶属机构合作密切。武汉大学共有7篇施引文献,201620182020年各1篇,20193篇。7篇文章二级机构均为物理科学与技术学院,武大为第一作者(同时也是通讯作者)的论文4篇。

3.相关主题研究前沿和热点

在近两年的施引文献中,ESI高被引论文和热点论文共计33篇(含获奖者本人两篇)。从这些文献的研究主题看,2020年诺贝尔物理学获奖主题的研究仍然是热点。论文信息如下(中文题名含全文超链接):


[1] ABUTER R, AMORIM A, BAUBOECK M, et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty=不确定度为0.3%的银河系中心黑洞的几何距离测量 [J]. Astronomy & Astrophysics, 2019, 625


[2] LUTZ D, STURM E, JANSSEN A, et al. Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving=本星系的分子外流:方法比较和间歇AGN驱动的作用 [J]. Astronomy & Astrophysics, 2020, 633


[3]  ALLAHYARI A, KHODADI M, VAGNOZZI S, et al. Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope=由非线性电动力学和事件地平线望远镜获得的磁性黑洞 [J]. Journal of Cosmology and Astroparticle Physics, 2020, 2


[4] GAO F S, SILVA E D, YANG M B, et al. Existence of solutions for critical Choquard equations via the concentration-compactness method=利用集中-紧性方法研究临界Choquard方程解的存在性 [J]. Proceedings of the Royal Society of Edinburgh Section a-Mathematics, 2020, 150(2): 921-54.


[5] GILMAN D, BIRRER S, NIERENBERG A, et al. Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses=暖暗物质变冷:八个四幅图像强引力透镜阵列对晕质量函数和自由流动的暗物质长度的限制 [J]. Monthly Notices of the Royal Astronomical Society, 2020, 491(4): 6077-101.


[6] HAROON S, JUSUFI K, JAMIL M. Shadow Images of a Rotating Dyonic Black Hole with a Global Monopole Surrounded by Perfect Fluid=旋转的Dyonic黑洞的阴影图像及所展现的由完美流体包围的整体单极子 [J]. Universe, 2020, 6(2)


7] FLUETSCH A, MAIOLINO R, CARNIANI S, et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies=本宇宙冷分子外流及其对星系的反馈效应 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 483(4): 4586-614.


[8] STUCHLIK Z, KOLOS M, KOVAR J, et al. Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes=宇宙斥力和磁场对围绕克尔黑洞旋转的吸积盘的影响 [J]. Universe, 2020, 6(2)


[9] TANG X H, CHEN S T. Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions=满足Berestycki-Lions假设的非线性奇摄动Choquard方程 [J]. Advances in Nonlinear Analysis, 2020, 9(1): 413-37.


[10] TOKOVININ A, MOE M. Formation of close binaries by disc fragmentation and migration, and its statistical modelling=星盘碎裂和迁移所致密近双星的形成及其统计建模 [J]. Monthly Notices of the Royal Astronomical Society, 2020, 491(4): 5158-71.


[11] XU X F, ARAV N, MILLER T, et al. HST/COS Observations of Quasar Outflows in the 500-1050 A Rest Frame. II. The Most Energetic Quasar Outflow Measured to Date= 类星体在500-1050 A静止框架内外流的HST/COS观测结果.第II辑:迄今为止观测到的最活跃的类星体外流 [J]. Astrophysical Journal Supplement Series, 2020, 247(2)


[12] AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole= M87事件地平线望远镜的首次结果.第I辑:超大质量黑洞的影子 [J]. Astrophysical Journal Letters, 2019, 875(1)


[13] AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation= M87事件地平线望远镜的首次结果.第II辑:阵列和仪器仪表 [J]. Astrophysical Journal Letters, 2019, 875(1)


[14] AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole= M87事件地平线望远镜的首次结果.第IV辑:中心超大质量黑洞成像 [J]. Astrophysical Journal Letters, 2019, 875(1)


[15] AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring= M87事件地平线望远镜的首次结果.第V辑:不对称星环的物理起源 [J]. Astrophysical Journal Letters, 2019, 875(1)


[16] BEHROOZI P, WECHSLER R H, HEARIN A P, et al. UNIVERSEMACHINE: The correlation between galaxy growth and dark matter halo assembly from z=0-10=宇宙机器:z=0-10的星系增长与暗物质晕聚集之间的相关性 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 488(3): 3143-94.


[17] BEUZIT J L, VIGAN A, MOUILLET D, et al. SPHERE: the exoplanet imager for the Very Large Telescope=SPHERE 球面成像仪:超大望远镜的系外行星成像仪 [J]. Astronomy & Astrophysics, 2019, 631


[18] COMBES F, GARCIA-BURILLO S, AUDIBERT A, et al. ALMA observations of molecular tori around massive black holes=阿塔卡马大型毫米/亚毫米波阵( ALMA )对大质量黑洞周围分子环的观测 [J]. Astronomy & Astrophysics, 2019, 623


[19] DAVE R, ANGLES-ALCAZAR D, NARAYANAN D, et al. SIMBA: Cosmological simulations with black hole growth and feedback=SIMBA:宇宙黑洞成长和反馈模拟 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 486(2): 2827-49.


[20] EILERS A C, HOGG D W, RIX H W, et al. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc= 银河系从5到25kpc的圆速度曲线 [J]. Astrophysical Journal, 2019, 871(1)


[21] EL-BADRY K, QUATAERT E, WEISZ D R, et al. The formation and hierarchical assembly of globular cluster populations=球状星团群的形成和层次结构聚集 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(4): 4528-52.


[22] KRUIJSSEN J M D, SCHRUBA A, CHEVANCE M, et al. Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback=短命分子云和快速反馈所致的快速而低效的恒星形成 [J]. Nature, 2019, 569(7757).


[23] LEJA J, CARNALL A C, JOHNSON B D, et al. How to Measure Galaxy Star Formation Histories. II. Nonparametric Models=如何度量星系恒星形成的历史.第II辑: 非参数模型 [J]. Astrophysical Journal, 2019, 876(1)


[24] MANN A W, DUPUY T, KRAUS A L, et al. How to Constrain Your M Dwarf. II. The Mass-Luminosity-Metallicity Relation from 0.075 to 0.70 Solar Masses=如何约束你的M矮星.第II辑: 从0.075到0.70太阳诸质量的质量-光度-金属丰度间的关系 [J]. Astrophysical Journal, 2019, 871(1)


[25] NELSON D, PILLEPICH A, SPRINGEL V, et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback= TNG50模拟的第一个结果:由超新星和黑洞反馈驱动的星系外流 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 490(3): 3234-61.


[26] PILLEPICH A, NELSON D, SPRINGEL V, et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time= TNG50模拟的第一个结果:恒星和气体星盘在宇宙时间中的演化 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 490(3): 3196-233.


[27] PUCCI P, XIANG M Q, ZHANG B L. Existence results for Schrodinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian=含分数p-拉普拉斯项的薛定谔-乔夸德-基尔霍夫方程解的存在性结果 [J]. Advances in Calculus of Variations, 2019, 12(3): 253-75.


[28] RODRIGUEZ C L, ZEVIN M, AMARO-SEOANE P, et al. Black holes: The next generation-repeated mergers in dense star clusters and their gravitational-wave properties=黑洞:下一代密集星团的重复合并及其引力波特性 [J]. Physical Review D, 2019, 100(4)


[29] SCHONRICH R, MCMILLAN P, EYER L. Distances and parallax bias in Gaia DR2= 在盖亚DR2发布数据中的距离和视差偏差 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 487(3): 3568-80.


[30] SHAIKH R, KOCHERLAKOTA P, NARAYAN R, et al. Shadows of spherically symmetric black holes and naked singularities =球对称黑洞的阴影和裸奇点[J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(1): 52-64.


[31] CHEVANCE M, KRUIJSSEN J M D, HYGATE A P S, et al. The lifecycle of molecular clouds in nearby star-forming disc galaxies=恒星形成盘状星系附近分子云的生命周期 [J]. Monthly Notices of the Royal Astronomical Society, 2020, 493(2): 2872-909.


[32] CASSANI D, ZHANG J J. Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth=含哈迪-利特尔伍德·索波列夫上临界增长项的Choquard型方程 [J]. Advances in Nonlinear Analysis, 2019, 8(1): 1184-212.


[33] SPARRE M, PFROMMER C, VOGELSBERGER M. The physics of multiphase gas flows: fragmentation of a radiatively cooling gas cloud in a hot wind=多相气体流物理学:辐射冷却气体云在热风中的碎裂 [J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(4): 5401-21.



因学科专业所限,难免出错,敬请批评指正;同时,也面向全校师生征集关注的领域和专题。联系方式:68754258,Email: jflai@lib.whu.edu.cn

(编辑:廖祥春 审核:刘霞)


最新阅读